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ABSTRACT

The goals of the research discussed in this report are:

(1) to create new models of time-shared computer systems which

include important features comnonly found in real systems;

(2) to insure that the formulations of, and solutions to, these
models are relatively simple so that they may be used by

designers and computer center managers;

(3) to compare the behavior of these models with the behavior of
more complex systems through simulation studies and empirical

performance investigations of operational computers; and

(4) to indicate some »f the ways these models may be used to

aid in the design, evaluation, and control of time-shared computers,

Chapter 1 contains an introduction to some important features of current
time-shared cowmputers and a survey and review of many of the current approaches

to their modeling. Errors in three well known articles are discussed and cor-

\

rected,

Chapter 2 presents a number of new models which are extensions to, and
modifications of, previous studies., The new features include a more realistic
treatment of overhead degradation and processing quantum length., One of the
models is a feedback queueing structure having two servers in tandem. The

results of each model include the mean value of the time required by the system
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to respond to a request. In addition, exact and approximate expressions for
expected response time conditioned on service vrequest are developed and
compared with each other to study the accuracy of the approximations.

Chapter 3 presents the results of a number of simulation experiments
designed to examine the robustness of the analytic models. The first model
is similar to the first analytic formulation. The next two simulations are
based on the tandem queueing structure., The last simulation includes a
detailed model of the scheduling mechanism of TSS/360, an operational time-
shared system marketed by IBM,

Chapter 4 contains the results of three empirical studies of actual
systems. The first two were performed on TSS/360 and the third was performed
on a Univac 1108 running with EXEC-8, a time-sharing operating system,

Chapter 5 contains a discussion of some applications of the models
developed in Chapter 2. The first example is an application of the models
to a design decision for the operating system of a multi-processor configura-
tion. The next illustratec the way the models may be used in performancz
evaluation studies to examine possible overall system improvements arising
from enhancements to subsystems. The last example indicates how the models
may be used in a dynamic control system to improve system performance.

The first appendix presents a number of results which were used, but
not derived, in earlier chapteirs. The remaining appendices contain listings
of major programs used in the research.

Analytic models are but one of many tools available to those who want
to analyze, measure, improve, and create better computing systems. One of
the goals of this report is to help place this approach to system modeling

into perspective as an important tool, not a panacea, for computer scientists.

0

iit



1.

TABLE OF CONTENTS

PAGE
Introduction. « oot eiin e ine it ittietiat sttt e e a s 1
1.1 The Use of Analytic Models - An Overview:::-:.c-cveevososen. 1
1.2 Important Features of Time-Shared Systems.:.:..::..oeevuoanrns 5
1.3 A Selected Review of Analytic Time-Sharing Models:::::-+... 10
New Analytic Models of Time-Shared Computer Systems::::.c..c.... 20
2.1 IntroduCtion -« :«:cereruruuuunneiarooeeooronnesaennnsensenas 20
2.2 The POiSSON ProCESS »«+tcvvvetrnrerunonnneseasoneenanssssenns 22
2.2.1 Process Definition..............ovvvuunnn 10000000 C ..23
2,2.2 Memoryless Property...........oeevuvevurvnnrnenennnns 24
2.2,3 Branching and Aggregation of Poisson Processes...... 24
2.2.4 Remaining Service Time Distribution................. 25
2.2.5 Output of an M/M/1 Queue...........ovvvvvvurennnn... 26
2.2.6 Results for M/G/1 Queue...........oovevureenennnnn.. 26
2.3 A Time-Sharing Model with Random Quanta and Random
Overhead - TSMOD1................. D000000DBGE 0000000000000C 27
2.3.1 Definitions and Model Formulation................... 28
2.3.2 A First Extension to the Basic Model............ .o..32
2.,3.3 TWo EXAmMpPles..........ouiiininnrnenennerennnenennenns 34
2.3.4 Mean Response Conditioned on Service Request........ 37
2.,3.5 A Simplifying Approximation.............covvvuurnnn. 43
2,3.6 An Exponential Service Quantum Example.............. 46
2.4 A Tandem Queueing Model - TSMOD2.........o'v'vmuerennenennns 48
2.5 A Processor-Shared Model with State Dependent
Overhead, Arrival, and Service Processes - TSMOD3.......... 53
Simulation Studies of System Behavior............... B 64
3.1 Introduction...........uueiriiiiin it e 64
3.2 Experimental Methodology,....................cvuvrruunnn... 65
3.2,1 The Simulations................ccvvvueinnnnnennnnn... 65
3.2.2 The Statistical Analysis..............ourriii. .. 66
3.3 A Simulation of TSMODL.......citinininnen et ennnnnnennnn.s 68
3.3.1 The Model.......ouii ittt ettt innnens 68
3.3.2 The ReSULES. ... ittt ittt it e i nnnns 70

iv



3.4 A Simulation of TSMODZ ... ............ccvunnirvenennnnnnn 76
3.4.1 The Models, ., . .........cviuiiiininnnininnnennnns 76

3.4.2 The Results, .. ... ... ..ottt innnennnns 78

3.5 A Simulation of Scheduling in TSS/360 .. ................ 86
3.5.1 The Model..........ccoiiuiiiiiiiiiiiiiiiiiinnnnn, 86

3.5.2 The Results, . ... ....iitiriiiiniiinnennanennnns 90

3,6 DisCUSSIONM . ...\ iiiii ittt i e e 92

4, FEmpirical Studies of System Behavior......................... 94
4,1 Introduction ..........iiieiiit i oneeeetaeranaanianas 94

4,2 Experiments on TSS/360 .\ttt e e 97

4,3 Experiments on EXEC-8 . . .. ...........c0iiiiiiiinin.n. 102

G,4 DisCUSSION . ..tvtr ittt i e 105

5. Application of the Models ............ .. .o vivineiinan,. 108
5.1 Introducticn .......... .0ttt 108

5.2 Software Lockout in a Multi-Processor ,................ 108
5.2.1 A Poisson Source Tandem Queueing Model - MODI , . 111

5,2.2 Finite Source Models - MOD2, ,,.................. 112

5.2.3 Discussion of Results , ., . ...................... 117

5.3 Performance Improvement Analysis ,, . ................... 120
5.3.1 TSMODL Analysis ..,........cccvuviiiiiniinnennnnn 124

5.3.2 TSMOD2 Analysis ... ..........ccciivviniinennnnan. 127

5.3.3 TSMOD3 Anmalysis .. ............c.iiiiiviiineninn. 128

5.3.4 Discussion of Results .. ...............ccc0vennn. 132

5.4 Dynamic System Control .............. .. 0o iiviiienan.n. 133
5.4,1 The System .. . ... .cuieiuiiuierenneeoneeeneenns 135

B 02UV o S B W M o e .. 137

5.4.3 TAA2 L. .. e e e e 137

Sl TAAD . e e e 139

5.4.5 Discussion of Results .. ............. . cvuin., 142

5.5 Conclusion and Future WOrk ...........coovviiiunnnan.. 145
Appendix A - Derivations...............c.co ittt i 147
Appendix B - Listing of TSMODZ ...........ocuiiiiiiiinneaunaanny 158
Appendix C - Listing of TSS/360 Model ... .....vrerirenennennns 162



Apperdix D - Listing of Script...... ©00000000000000000000000000000C 169

Appeadix E - Listing of Allocation Model...................ovvnnnn. 174

Bibliography.................... vooooo M ;o0 Moo o0000MooaoMacoonac 179
TABLES

2.1 Comparison of Exact and Approximate Expressions for E/T/N=n)...44
3.1 Comparison of Experimenta! and Analytic Values for TSMODI...... 70
3.2 Simulation Results for Experiments on TSMOD1 .................. 7
3.3 Average Response Time as a Function of Service Request TSMOD1..74
3.4 Comparison of Experimental and Analytic Values for TSMOD1 -
Version I ........iiiieeennrrasoennenosonaansannas 5000000000 00C 78
3.5 Simulation Results for Experiments on TSMOD2 - Version I ......79
3.6 Average Response Time as a Function of Service Request - TSMOD2
Version I ... ... .uiuiiiiineiinetnernenoeeatoesaonoserananesans 80
3.7 Simulation Results for Experiments on TSMOD2 - Version II......83

3.8 Average Response Time as a Function of Service Request -TSMOD2

Version II .....i.ieeernetnenereeonenncssonoasossonasscnonsorsnns 84
5.1 Results of Simulation of TAA2 ... .. ... ...ttt rnernnnnnnns 143
5.2 Results of Simulation of TAA3 ... ......c.iitiiiirnrroennranes 144

FIGURES

1.1 General Structure of Time-Sharing Systems ........ccveveeeencens 6
1.2 Empirical Study of Interrupt Types on TSS/360 .................. 9
1.3 Specific Structure of a Number of Time-Sharing Models ..... R
2.1 Structure of Model with Overhead - TSMOD1 ............c0vvvunnn 29

2.2 Effect of Quantum Size on Standard Deviation of Response-SD(R).36

2.3 Effectz of Overhead and Input Rates on Expected Response -

TSMOD1 ............. R 000dsd M 5 0oM00000000000000000C soooMoooc 38
2.4 Calculation of First Wait Time, Ty .............. Ceeesetanaena 41
2.5 Structure of Tandem Queueing System - TSMOD2 - .............. ..50
2.6 Expected Response as a Function of System Load - TSMOD2 ....... 54

2.7 Expected Response as a Function of Service Request V - TSMOD2..55
2.8 Structure of Finite Source, Processor Shared Model - TSMOD3 .. .58

2.9 Mean Response as a Function of the Number of Terminals -
TSMOD3 ........... 900000000000000000000C 9000000000000000000E ...63



CHAPTER 1

INTRODUCTION

1.1 THE USE OF ANALYTIC MODELS - AN OVERVIEW

"Everyone today knows that a queue is a waiting line. If one
also takes the trouble to examine the literature, which now is near-
ing 2000 references on the subject, he might get the idea that all
those contributing to the understanding of congestion phenomena are
interested in doing something about them since, after all, queueing
theory is concerned with relieving pain and saving tim» for all of
us who have to wait. Indeed, queues make a substantial demand on  ur
very lives by taking precious time from them.

But the situation is getting worse in spite of the fact that
in the past seven years the literature of queueing theory has in-
creased by half of its amount for the previous fifty years., Improve-
ments do not match the increase in theoretical developments. Rarely
has so much ingenuity been shown in tackling a variety of technical
problems on paper by some of the ablest people in the world. It may
be that many additional good papers are waiting in queues for publica-
tion. But real life queues are still primitive, and indifference to
waiting by both facility owners and resigned customers is a normal
state of affairs,” 1
Thomas L. Saaty

"The big problem with management science models is that managers
practically never use them. There have been a few applications, of
course, but the practice is a pallid picture of the promise. Much of
the difficulty lies in implementation and an especially critical aspect
of this is the meeting between manager and model. I believe that com-
munication across this interface today is almost nil and that the situa-
tion stands as a major impediment to successful use of models by managers
¢sssssseses.A model that is to be used by a manager should be simple,
robust, easy to control, adaptive, as complete as possible, and easy to
communicate with." 2
John D. C. Little

The goals of the research discussed in this report are: (l) to create
new models of time-shared computer systems which include important features com-

monly found in real systems; (2) to insure that the formulatiouns of, and solutions

1Saaty, T., '"Seven More Years of Queues, A Lament and A Bibliography', Naval
Research Logistics Quarterly, Vol. 13, No. 4, December, 1966, p. 447,

2 .
Little, John D. C., "Models and Managers: The Concept of a Decision Calculus",
Management Science, Vol. 16, No. 8, April 1970, p. B-466.
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to,these models are relatively simple so that they may be used by designers
and computer center managers; (3) to compare the behavior of these models
with the behavior of more complex systems through simulation studies and
empirical performance investigations of operational computers; and (4) to
indicate some of the ways these models may be used to aid in the design,
evaluation, and control of time-shared computers. The quotations from Saaty
and Little indicate that often theoretical results of operations research
studies are not applied to practical situations. The Institute of Management
Science recently changed the name (and the focus) of one of its periodicals
to Interfaces in an attempt to bridge this implementation gap.

Two reasons why computing system models often remain unused are that
articles describing them seldom contain discussions about their validity
for describing observed phenomena and that often the results are so complicated
that users are not willing to invest the time needed to understand the model
and its behavior. The main purpose of descriptive models is to account for
observed phenomena of physical systems. The complexity of most actual sys-
tems requires that any particular model address itself to a limited and con-
strained subset of state variables., Thus each model is an abstraction of
a particular set of important features of interest to an analyst or designer.
Simplifications required to make an abstraction manageable by a particular
solution technique limit both scope and power. Since analytic models are
characterized by symbolic formulations and deducFive derivations, they require
many simplifying assumptions. The consequences of these assumptions must be
explored before one applies the model,

For the study of computing systems there are two other tools which are

related to analytic modeling:
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(1) the construction of large, detailed, simulations

(2) the design and implementation of empirical investigations

All three methods have areas of applicability which intersect. For example,
analytic models often expand to the point where a large amoun* of computa-
tional effort is required to calculate results. Often a point is reached
when a modest simulation may be a more cost effective approach. Large simula-
tions may eventually grow into system prototypes, and enpirical investiga-
tions can provide insight required to design better models. Analytic models
often indicate which of many possible parameters or subsystems are good
candidates for more detailed study via simulation and experimentation.
Another important use for analytic models is as a reference system for statis-
tical analysis of simulation results. For example, Gaver (1969) presents
evidence showing how the classic Monte Carlo technique of control variates,
which makes use of an approximate model, can improve simulation efficiency
by reducing the variance of parameter estimates from simulation experiments.

To be useful, analytic formulations should include the essential features
of a system, or subsystem, and should have solutions that are readily under-
standable. The necessity of spending excessive computer effort to solve
for each parameter value of an analytic model casts doubt upon its usefulness
since simulations typically can handle more detailed cases with similar effort.
The conclusion from these considerations is that analytic models, simulation
studies, and empirical investigations should complement one another in the
study of computing systems. The new models developed in the next chapter
add to the tools available for analytic performance analysis.

Section 1.2 contains an introduction to some important features of

time-shared computer systems, and Section 1.3 contains a survey and review
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of many of the current approaches to their modeling. Errors in three well
known articles are discussed and corrected.

Chapter 2 presents a number of new models which are extensions to, and
modifications of, previous studies. 1he new features include a more realistic
treatment of overhead degradation and processing quantum length. One of the
models is a feedback queueing structure having two servers in tandem. The
results of each model include the mean value of the time required by the sys-
tem to respond to a request. In addition,exact and approximate expressions
for expected response time conditioned on service request are developed and
compared with each other to study the accuracy of the approximations.

Chapter 3 presents the results of a number of simulation experiments
designed to examine the robustness of the analytic models. The first model
is similar to the first anmalytic formulation. The next two simulations are
based on the tandem queueing structure. The last simulation includes a
detailed model of the scheduling mechanism of TSS/360, an operational time-
shared system marketed by IBM,

Chapter 4 contains the results of three empirical studies of actual
systems. The first two were performed on TSS/360 and the third was performed
on a Univac 1108 running with EXEC-8, a time-sharing operating system,

Chapter 5 rontains a discussion of some applications of the models
developed in Chapter 2. The first example is an application of the models to
a design decision for the operating system of a multi-processor configuration.
The next illustrates the way the models may be used in performance evaluation
studies to examine possible overall system improvements arising from enhance-
ments to subsys;ems. The last example indicates how the models may be used

in a dynamic control system to improve system performance.
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The chapter concludes with an evaluation of the techniques and points to

future work,

1.2 IMPORTANT FEATURES OF TIME-SHARED SYSTEMS

"It is now possible for users
to be connected bv a pailr of wires to a powerful computer system
that may be in the next room or may be many miles away. All users,
wherever they are, have instant access to the computer, and can ex-
pect a response to their demands that is limited only by the fact that
the computer must share its time between all the users. The develop-
ment of such systems is, however, still in its infancy, and much develop-
ment of hardware and software must take place before users can be given
everything that they have a right to demand. There is no doubt that,
in a few years time, the best of the currently operating systems will

appear very primitive indeed." 3
M. V. Wilkes

Time-Sharing Computing Syutems, by Wilkes (1968), is a good introduction

to the hardware and software features included in many time-shared structures.
Tt will provide a good background to the non specialist.

Figure 1.1 illustrates the basic features of many time-shared systems.
Users submit tasks from termminal devices to the system. A task may be con-
ceptualized as a job step which requires the use of a number of system re-
sources to be completed. The computer's operating system controls and al-
locates these resources, such as primary and secondary memory, channels, and
processors, so that users requiring small amounts of resources will get a
rapid response from the system. In this report response time will be defined
as the elapsed time from task submittal to task completion. If a particular
task keeps a resource such as the central processor occupied for a time period
that would seriously affect the response of other jobs in the system, it is
interrupted and placed in the system of queues while another task uses the

resource. When the system has finished with all of the work associated with

3
Wilkes, M. V., Time-Sharing Computer Systems, American Elsevier Publishing
Company, Inc., New York, 1968, p. 2.
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the task it gives the user an appropriate output message. Using the con-
tent of this message, the user formulates his next job step, and in this
manner cyclic interactions contirnue until the user leaves the system. A
major goal of such designs is to encourage users to interact with data and
programs. If interaction is very slow or cumbersome, effectiveness will
diminish. Short requests usually receive high priority through an interrupt
scheme that allows the central processor to switch to a new task whenever
the active one is delayed or exceeds a maximum processing threshold called

a quantum interval. In this way the central processor divides its capacity
among tasks awaiting execution. When a user submits a request that will
require minutes, or even hours, of central processing time, interactive
response should not be greatly affected. The user with a long task must
realize that due to resource sharing with interactive requests, his job will
take longer on a shared system than on a batch system of equal capacity.

A "good model" must predict both fast response time for short jobs and response
degradation for long ones.

Another observed phenomenon of time-sharing is non-linear degradation
of response time as a function of system load. Systems can provide good
response only within a limited range of input demand., If demand exceeds
this range, response time deteriorates rapidly. Because of this degradation,
many systems arbitrarily limit the number of users who are allowed to inter-
act simultaneously with the computer. Non-linear response to increasing de-
mand is another physical observation which should be a derived consequence
of a "good model".

Computing structures allowing frequent task switching and quanta inter-
ruptions add overhead time to that already present in the basic operating

system. This addition arises because of many bookkeeping functions required

bl T



to maintain status lists of tasks and shared resources. A 'good model" of
time-sharing systems should explicitly consider overhead degradation.

The random nature of actual quantum intervals is often ignored in analytic
models. Input/output requests, paging demands in systems with virtual
memory, supervisor calls, and external interrupts are causes of quantum
ends, in addition to task completions and quantum overruns that combine to
make actual quanta random. The following statistics from a user seésion at
Carnegie-Mellon University on an IBM 360/67 demonstrate that the IBM time-
sharing monitor, TSS, processes interrupts occurring most frequently for
reasons other than task completion or excessive central processor utilization
during an interaction., Figure 1,2 is a state transition diagram illustrat-
ing the results of a probe of a typical user session.

Numbers on the figure are frequencies of events. During this 16 minute
probe, 927 separate interactive job steps generated 30,856 interruptions to
normal processing, an average of approximately 33 interrupts per interaction,
Only 367, or about one percent, of these interrupts were processing quantum
overruns. A random event such as a reference to part of a program not cur-
rently in core (a page fault) triggered the vast majority of quantum aborts.,

The software monitor used to gather these statistics creates an output
record for every internal system event of interest. The analyst initializes
a particular probe by informing TSS which events are to be traced, and thke
system saves the resulting output on magnetic tape for later statistical analysis.
Deniston (1969) describes the design and performance characteristics of this
type of measurement technique.

The preceding review swmmarized a number of important features of opera-
tional time-shared systems. The next section indicates the kinds of struc-

tures currently in use to model them. The highly variable nature of time-sharing
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interactions indicates that probabilistic methods should form a basis for
system analysis. Queueing formuiations often become very complicated even
though the models are easy to describe. Thus one must carefully select

areas to study within a system or queueing theory will be of little help.
1.3 A SELECTED REVIEW OF ANALYTIC TIME-SHARING MODELS

Time-sharing models have grown at a rate paralleling that of actual sys-
tems. McKinney's (1969) survey and annotated bibliography, containing 35
references, categorizes most contributions through 1969. An earlier paper
by Estrin and Kleinrock (1967) presents a useful taxonomy of analytic models
and a review of simulation and measurement studies of several systems. These
references are excellent introductions to the general area of time-sharing
models. The more limited goal of this section is to trace the development
of models upon which the work of Chapter 2 depends.

Figure 1.1 may be used as a conceptual framework to classify many models.
The user subsystem generates tasks for the computing subsystem. There are
two common ways of modeling the input process. The most common approach
is to assume that requests arrive at the computer according to a homogecneous
Poisson process with arrival rate A jobs per unit time. This assumption is
equivalent to stating that interarrival times between requests have an ex-
ponential distribution with mean 1/)\ time units. This model of the arrival
process also assumes that the input rate is independent of the behavior of
the computer subsystem, The common queueing terms for this assumption dare

the "exponential, infinite source" input, or the "Poisson source'.
The other common approach to the arrival process is to assume a tinite

number of independent users, each of whom submits a task and waits until it

Section 2.2 contains a summary of many of the properties of a Poisson process.
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has been satisfied before submitting another. For this case "think-time",
commonly defined as the interval between response to one task and submittal
of the next, for each of the users, has an exponential distribution with
mean 1/)\ time units. For this "finite source" model the combined arrival
rate to the computer depends upon the number waiting for service since a user
may submit only one task at a time, This structure is self balancing since
the input rate decreases as the system becomes overloaded.

The exponential distribution is central to most analytic time-sharing
models. If time between events is distributed exponentially, and an event
has not occurred for t time units, the time remaining until the next event
has the same exponential distribution as the original inter-event interval,
This memoryless, or Markov, pProperty permits many simplifications in model
structure because state information concerning elapsed time since a prior
event is unnecessary.

Four empirical system studies support the approximate exponential shape
of interarrival time distributions, but the measurements usually have higher
variance than predicted by the exponential (Totschek, 1965; Coffman and Wood,
1966; Bryan, 1967; Scherr, 1967). Although the exponential does not fit the
data exactly, the additional complexity introduced by allowing general inter-
arrival distributions is not justified for models having simple results as
a major goal.5 Greater input variance causes slightly increased system congestion.

There are also two common ways of modeling the basic service philosophy
of a time-sharing organization. The first, and more realistic, is the "round
robin model" in which one explicitly considers a quantum interval during

which a single task receives all the power of the central processing unit,

SSee Saaty (1961), Chapters 9 and 10, for formulations of queueing systems
having generalized input processes.
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If the task does not terminate naturally during this interval, it is inter-
rupted and forced to rejoin the queue of waiting users while some other task
gains access to the processor. Some models include priority levels in the
queueing subsystem, The terms "processor-shared" or "pure time-sharing"
denote the second basic service approach which may be viewed as a limiting
case of the first method. At each instant, the fixed processor capacity, C
instructions per time unit, is uniformly shared by all active tasks. Lach
of M active jobs receives C/M units of computing power per unit time. In
the limit, as tiie quantum interval approaches zero, the finite quantum, round
robin model becomes the processor-shared system.6

One of the early works to consider a feedback qucueing structure similar
te Figure 1.1 was the paper by Takacs (1963). His problem arose in studies
of the theory of telephone traffic, and there is no mention of either time-
sharing or computer system design. His formulation includes an infinite ex-
ponential source, a finite and random quantum interval, and total service
times which are the sum of a geometrically distributed number of quanta each
of which is drawn from the same generalized distribution. He solved this
model for the expected number of tae%s in the system and for the unconditioned
moments of response time for a re;. sst. (An interesting aspect of the study
was the use of a symbolic differentiation computer program to find the complicat-
ed expression for the second moment of response time.)

Chang (1966) realized the applicability of the Takacs work to the time-
sharing domain and redefined a number of parameters to be consistent with
computer terminology. He extended the original model to consider a random

selection of the quantum distribution, but he solved the extension only for

Coffman and Kleinrock (1968) summarize many of the models of these service
disciplines.
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the generating function of the number of queued tasks at the end of a quantum
or at the instant of a job departure., Neither author calculated mean response
conditioned on the amount of service requested. This latter quantity indicates
how a time-sharing design will respond to tasks requiring different amounts

of computing time. Section 2.3 presents a logical extension of the Takacs
work in which random overhead is added to the quantum interval and mean
response conditioned on service is calculated.

Kleinrock (1964) first calculated expected response conditioned on
service for a simple model. He constrained events to occur only at discrete
points of time corresponding to constant service quanta of length Q, At
the end of each interval a new task enters the first-in-first-out (FLFO)
queue with probability \Q; the job being served, if the system is not empty,
either completes service (probability 1-g) or rejoins the end of the queue
(probability ¢); and the processor takes the job at the head of the qucue
for a service interval of length Q. Call the processing requirement of a job,
V. A job having V = nQ units is forced to join the end of the queue n times
before its processing is complete. Kleinrock calculates the steady state
expected number of tasks in the system, E(M) as given in equation (1.1).

He also calculates the conditional response time for a job requiring nQ units
of processing, E(Ran), and shows that a good approximation to the latter

result is the simple formula of equation (1.2).

= Mo
(L1 E0) = 12—

Mo
(1.2)  ER[nQ) mmnQ(l + {722

In a later paper Kleinrock (1967) considers the limiting case (as Q - 0)

of the above model. For this processor-shared case the arrival process
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becomes the infinite exponential source with rate )\ jobs per unit time, and
the service requirement for each task becomes an exponential random variable
with mean 1/u time units per job., Equation (1.3) is his result for expected
response time conditioned on a processing neced of V time units. In the con-
cluding sections of the paper Kleinrock further extends his earlier work

by considering priority classes in the queueing structure,
(1.3) E(RIV) = V~u/(u—\)

A series of four similar articles closely relatred to Kleinrock's worlk
began with a& paper by Shemer in 1967, In these models computing requests
come from an infinite exponential source having rate ) jobs per unit time,
Processing requests arec exponentially distributed random varial les having an
expected value of 1/u time units. [Each request joins the end of a first-iu-
first-out queue upon arrival, FEach task receives a maximum processing Antum
interval of Q time units, where Q is a counstant, If a request cowmpletes
service before its time limit expires, it leaves the system and the processor
immediately begins work on the task at the head of the queue, I @ dob can-
not complete service during a quantum, it is interrupted and forced to join
the end of the queue while the processor works on the next waiting task.

Fimre

Figure 1.3 illustrates this specific form of the general structure of
1.1.

For this model, the expected number of tasks in the system, and the
expected unconditional response time, are identical to the vesults [or thoe

classical Poisson source exponential service, single channel queueing

7
system (M/M/1)." Shemer (1967) uses these facts in his derivation of expected

In queueing literature, models are often classified using Kendall's notation:
a/s/n where "a" denotes the type of arrival, "s" the type of service, and 'n"
the number of service channels., In the example above 'M" denotes Markov, or

exponential, arrival and service.
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response time conditioned upon a particular task's service request, but

he makes two errors. Using expected value arguments he derives a recursive

expression for the mean time spent in queue waiting for service quantum i as
a function of the expected wait for service quantum (i-1). The derivations

are clear to follow and correct except for i=l and i=2, The two properties

of tha model that Shemer does not treat correctly are:

1. The remaining time, Q> of a quantum interval in progress, if
the processor is not idle, when a new task enters the system
has a distribution that is different from the distribution of

a full quantum interval.

2. The conditional probability that a task will return for more
service, given that it has already completed part of a service
quantum, is different from the probability that a task just start-

ing a quantum interval will return for additional processing.

These errors propogate through all values of i and distort the final result,
Section 2.2 contains a discussion of the properties of a quantum in progress
when a new task arrives and Appendix A contains a correct derivation of this
model with a slight extension., Shemer's paper concludes with extensions to
the basic model involving priorities.

Coffman and Kleinrock (1968) use a slightly more complex approach to
study the same model in a paper which also contains a number of interesting
extensions including priority scheduling policies. Although both articles

were published in the Journal of the Association for Computing Machinery,

the latter paper did not indicate the errors in the earlier work. Coffman

and Kleinrock made a small mistake in the derivation of the second moment
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of the processing time actually received by a task during a quantum, Their
result is distorted also since this intermediate formula appears in the
final expression. Appendix A presents the corrected result for the second
moment of a quantum interval of this type.

Adiri and Avi-Itzhak (1969) solved a model similar to Figure 1,3 with
the addition of a constant delay, d, before every processing quanta. This
extension adds realism to the basic model, and complicates the solution.

The delay represents constant sverhead degradation, or set-up time, required
by the processor to switch from one task to the next. The added complexity

of the solution arises from the fact that the total processor time required

by a task is no longer exponential. A task needing V units of processing,
where V is an exponentially distributed random variable, now requires

V + [v/Q]-d processing units where [X] denotes the largest integer greater

than or equal to X. The results for the expected number of tasks in the
system and the expected unconditional response time are now identical to

the exponential source, general service time, single channel queueing system
(M/G/l). The authors employ sophisticated mathematical techniques involving
complicated Laplace transforms and generating functions to solve for response
time conditioned on service request. The solution is correct and reduces to
the results of Shemer (1967) and Cof fman and Kleinrock (1968) when the delay,
d, is set to zero, and when the corrections noted in the preceding paragraphs are
incorporated in the earlier derivations. To derive expected value of response
conditioned on service, one may use expected value techniques employed by tlie
previous authors rather than the more involved methods used by Adiri and
Avi-Itzhak. Since these simpler techniques are the basis for the derivations
in the following chapter, Appendix A contains a proof that the results from

the two methods are identical.



-18-

Rasch (1970) studies the model of Figure 1.3 and then extends it in
almost the identical manner as the work described in the preceding paragraph.
He adds a constant delay d after, rather than before, each processing quantum.
His approach contains a major mathematical error not present in any of the
other three works. While deriving the expression for expected waiting time
in the queue before receiving service quantum i, he mistakenly presumes that
the mean value of all waits after the first will be the same. Although the
differences are small, and one may wish to make this simplifying assumption
to achieve simpler final expressions, one must realize (as the other authors
did) that the wait for service quantum i depends in a non-trivial way upon
the wait for service quantum(i-1).

The preceding paragraphs place into perspective previous studies that
are in the direct line of development of the derivations of Section 2.3 and
2.4. The work of Section 2.5 has different historical roots since it is a
finite exponential source, processor-shared, model including overhead loss
as a function of system state. Early work in this area is categorized in
queueing literature as 'the machine interference" problem.8 Sherr (1967)
recognized the applicability of this work to the time sharing domain and
presents an exponential, finite source, processor-shared model. He compares
his results with a simulation and with measuremencs taken from the CTSS
time sharing system at MIT. To approximate an overhead loss of X percent,
he simply reduces the capacity of the processor by X percent.

Attempts to solve the structure of Figure 1.3 with modifications of
a fini'n number.of exponential input temminals and a constant delay d before

each quanta started with the paper by Coffman and Krishnamoorthi (1964).

T
See the book by Saaty (1961), p. ses 323-333, for an excellent review of re-
sults of classic work on machine interference.
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This work was expanded by Krishnamoorthi and Wood (1966) and then further
refined with the correction of an error by Adiri and Avi-Ttzhak (1969b).
Results of these studies are complicated in both the methodologies and the
form of the expressions. Greenberger (1966) made a number of mathematical
approximations to achieve simpler, although approximate, results. Applying
a cost function to service delays he investigates the optimal size for the
quantum parameter Q. 1In all of these studies overhead delay, d, and maximum
quantum size, Q, are constants and service and input distributions are ex-
ponential,

A number of other papers present surveys of analytic models concerned
with features such as externally assigned priorities and service disciplines
which are dependent on system state. In addition to the two surveys referenced
at the beginning of this section, and the papers already discussed, the inter-
ested reader is directed to studies such as Coffman (1966), Coffman and Muntz
(1969), and Schrage (1967) and (1969).

A different modeling approach is based upon the work of Jackson (1963)
and Gordon and Newell (1967). In these models tasks circulate among a
number of service stations. Buzen (1971) applies these methods to multi-
programming systems, and Moore (1971) applies them to time-sharing designs.
Courtois (1971) applies results of Simon and Ando (1961), concerning the
dynamics of nearly decomposable systems, to queueing systems, His methods
significantly simplify the numerical work required to solve hierarchical
queueing networks.

Chapter 2 contains a number of models which extend the work reviewed
in this section. The aim of these derivations is to include as many fea-
tures of real systems as possible in model formulations which lead to straight-

forward results.
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CHAPTER 2

NEW ANALYTIC MODELS OF TIME-SHARED COMPUTER SYSTEMS

2.1 INTRODUCTION

The analytic models presented in this chapter are the end products
of compromises designed to include a number of important characteristics
of current time-shared computer systems often ignored in other analytic
models, but still to insure that the results are easy to understand and
compute. They focus on the mean time required for a time-sharing system
to respond to a user's request.

The survey of the analytical modeling literature in the previous
chapter revealed that overhead and swapping times are often neglected
in models of time-sharing. If considered, they appear almost exclusively
as constant delays either before or after each service interval. Simi-
larly, even though most time-sharing systems have many different quantum
sizes based on a job's priority, its recent history, and the system state,
models in which the quantum intcrval is a parameter usually consider it
to be a constant and not a random variable. Results of many of these
models appear as Laplace transforms which often require numerical inver-
sion. Transforms are also used directly to obtain moments of distribu-
tions by differentiation, but often the results are very complicated,
(See the following papers for illustrations of these statements: Greenberger,
1966, Krishnamoorthi and Wood, 1966; Coffman and Kleinrock, 1968; Adiri
and Avi-Itzhak, 1969, Rasch, 1970.)

The new models presented in this chapter extend previous work. The

first foimulation includes features such as:
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1. a random part of each quantum interval is required for

overhead functions
2. the service/execution segment of each quantum is a random variable

3. the total service request for a task may have any distribu-
tion which can be represented as a geometrically distributed
sum of independent random variables, each of which has the

same arbitrary distribution

The second model is a tandem service structure which models the multi-
programming aspects of many systems by representing the behavior of a
task as a random number of cycles through both a central processor and
an input/output subsystem. Processing may occur simultaneously in each
subsystem. The third model is a finite source system having a processor-
shared service facility with overhead degradation which is a function of
the state of the system.

The following symbols will be used in a standard manner throughout

the report. Other notation will be introduced as needed in each section.

P(e) = the probability of event (-)

P(GIH) the conditional probability of event G given event H

Fx(t) the cumulative probability distribution function of a
random variable X
= P(X s t)

= j‘t dF (t) (the Stieltjes integral)

-

fx(t) the density function of a continuous random variable X
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E(X) = the expected value of a random variable X

I d

= J_m t Fx(t)
E(XIY) = the conditional expectation of X given Y
E(g(X)) = ji;g(t)de(t) = the expected value of a function g(-)

of a random variable X
VAR(X) = the variance of a random variable X
2

= E((X - EX)) )

SD(X) = the standard deviation of a random variable X

1
= (VAR(X))Z

the lLaplace transformation of a non-negative random
variable X

-sX o -st
= E(e ) = Jc e dFX(t)

the inverse Laplace transformation

Lx(s)

-1

Lx (t)

Before proceeding to the derivation of the models, the next section will
review some important properties about the Poisson process that are uscd

throughout the chapter,
2,2 THE POISSON PROCESS

This section contains a brief summary of a number of well known
properties of the Poisson process which are used throughout the field of
queueing theory. These results are usually scattered throughout texts. The
following books contain good discussions: Feller (1957); Saaty (1961);
Parzen (1962); and Conway, Maxwell, and Miller (1967). The following
presentation borrows extensively from the material contained in Chapter 8
of Conway, Maxwell, and Miller (1967). This text also contains an excel-
lent bibliography for the reader interested in pursuing the subject in

greater depth,
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2.2.1 Process Definition

A counting process is usually defined as an integer-valued process
{N(t), t = 0} which counts the number of points occurring in an interval,
these points having been distributed by some stochastic mechanism. Here
the points represent the times at which events of a specified character
occurred. Consider events occurring in time on the interval 0 to «,
and for t > 0 define N(t) to be the number of events that have occurred
in the interval 0 to t (the interval is open at 0 and closed at t). Let
N(0) = 0. Then, for a Poisson process, whatever the value of N(t), the
probability that during (t, t+h) an event occurs is A-h + o(hz),
and the probability that more than one event occurs is o(hz). The term
o(hz) denotes a quantity which is of smaller order of magnitude than h
so that o(hz)/h tends to zero as h tends to zero. The Poisson process
has increments between events which are independent and stationary in time.

The following equations are derived consequences of the process
definition.

At

()\-t)n e

= 0=0,1,2,...

(2.1) P(N(t) =mn) =

(2.2) E(N(t)) = A.t
1
(2.3) SD(N(t)) = ()\-t)2

1f A is the random time between two successive events, then:

(2.4) P(Ast) = 1l-e , t=0

1
See Parzen (1962), p. 117.
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(2.5) EQ) = 1/a
(2.6) SD(A) = 1/

2,2.2, Memoryless Property

A consequence of the postulate that the probability of an event
during (t, t+h) is independent of previous process history is that the
time until the next event, given that no event has occurred for y time

units, is independent of y.

(2.7) P(A> y+t|A>y) = P(A>t) =e M, £>0, y> 0

Another interesting property of the Poisson process is that if n events
occur in an interval (0,t), then the n event times are independently

and uniformly distributed over the interval (0,t)

2.2,3, Branching and Aggregation of Poisson Processes

Consider a Poisson stream of events with rate )\ which is randomly
split into k different streams in which the probability that path i will
be taken is P;e If the output paths are chosen independently, then the

th

i path is a Poisson stream with rate xpi'
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Conversely, if k independent Poisson streams, having rates Xl,kz,...kk,

k
are aggregated, the resulting stream is Poisson with rate A= X li.
i=1
Mo
~..
\ -
S
)l T-' —» A

2.2.4 Remaining Service Time Distribution

Let jobs arrive at a server from a Poisson source. Given that a
new job arrives while another one is being served, the remaining service
time, Q_, is defined as the time interval from the arrival of the new
job until the service completion of the one already there. If service
intervals, X, are random variables with distribution function Fx(t),
then Conway, Maxwell, and Miller (1967) derive the following two results
about Qr’ the remaining service time:

a - Fx(t))dt
(2.8) P(t=Q st+ dt) =

E(X) ?
k1
k, _ EX ) _
(2.9) E(Qr) = G E(X) k=1,2,...
Ty ca {2,8) gives the probability that Qr will be in a small interval,

and (2.9) gives the kth moment of Qr' The following diagram illustrates

2Conway, Maxwell, and Miller (1967), p. 146-147. Appendix A contains
derivations of equations (2.8) and (2.9). The method used to derive
(2.8) differs from the approach of Conway, Maxwell, and Miller.
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the relationship between X, and Qr' The results are conditioned on there

being a job in service when a new one arrives,

Service interval of length X
s —

l I time

| ——

r

Arrival time

of new job
Remaining service
interval of job in
pProgress when new
job arrives

2.2.5 OQutput of anp M/M/l Queue

If the arrival to a single server queueing system is Poisson with
rate ), and the service ig exponential with rate k= X, and if the queue
scheduling procedure is independent of the set of processing times of the
jobs, then in the steady state the departure intervals are independently
distributed exponential variables with parameter ). In other words, the
output process is Poisson with the same rate, )\, as the input process.
This result may be extended to the generalized birth-death process, and

thus it also applies to M/M/n systems,

2,2.6 Results for M/G/l Queue

If the input process to a single server queueing system is Poisson
with rate \, if the Processing time, X, has a general distribution with
mean l/u, and if the traffic intensity p = X/u is less than one, then for

any service discipline that is independent of the Processing times of the jobs



-27-

(such as first-in-first-out), the following results are steady state values

for important system parameters.

(2.10) E(flow time through queue and server) = E(R)

2 2
_ 2PE(X)-(-p) + MEXD) _ A-E(XD)
2-(1-p) = EQX) + 57(1-0)

(2.11) P(server is idle) = l-p

Equation (2.10) is the classic Pollaczek-Khintchine formula., The expected

number of jobs in the queue and in the server is related to this result by (2.12),
Little's theorem (1961), These results show that different processing time
independent scheduling rules have no effect on the mean number in the system,

the mean response time, and the probability that the server will be idle.
Scheduling rules which are independent of processing time do have effects

on the respoﬁse times of individual jobs, but not on the expected value of

response for all jobs.
(2.12) E(number of tasks in M/G/l system) = A*E(R)
2.3 A TIME-SHARING MODEL WITH RANDOM QUANTA AND RANDOM OVERHEAD - TSMOD1

The model in this section has the following basic structure: a
Poisson source of tasks; a random delay drawn from a general distribution
representing overhead loss due to quantizing; a random processing quantum
drawn from an arbitrary distribution; and feedback to a round robin,
first-in-first-out queue. The independent variables are: speed of the
processor; interrupt probability; and the probability distributions of

quantum requests, overhead delays caused by each interrupt, and interarrival



-28-

times between requests. The dependent variable is the expected value of
the time required by the system to service a request. Although analysis
becomes complicated, the directly applicable result is simple., This model
is useful since it retains simplicity while including a number of essential
parameters for time-shared systems. Figure 2.1 illustrates the structure

of the model.

2,3.1 Definitions and Model Formulation

Define the following symbols for use in the model.

C = a constant equal to the computer processing rate expressed
in instructions per unit time

£ = the probability that a task has been completed after an
interrupt

W = the random number of instructions executed during a pro-

cessing quantum before an interrupt occurs
. . th
wi = the i~ moment of W

V = a random variable denoting the number of instructions
required by a task for one complete interaction

. .th
vi = the i moment of V

D = a random variable representing the overhead delay of an
interrupt

. . th
di = the 1t moment of D
M = the random number of tasks in the queue and in the server
R = response time, a random variable denoting the elapsed
time from task submittal to task completion (queue wait-

ing time plus service and overhead time)

N = the number of interrupts experienced by a task during
the execution of its V instructions

A = a random variable expressing the interarrival time between
tasks requesting service from the system

Q = the random length of a quantum interval which is the sum
of a service segment, W/C, and an overhead delay D.
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The original model presented by Takacs (1963) has the following
formulation and solution within this more general framework. Requests
for service arrive at the system from a Poisson source. If e, is the
time the ith job enters the system, interarrival times are Ai =e,-e g
All Ai are independent, identically distributed random variables having
an exponential distribution with expected value E(A) = 1/A. (See equations
2.4, and 2.5,)

Models based on the simplistic assumption of constant quanta are
neglecting a primary feature of many real systems. A way of approximating
the fact that tasks often return to the queue after using only a small
amount of the maximum allowable quantum (for example, to wait for an
input/output request) is to make the quantum W a random variable, The
server works on tasks in a cyclic, round robin manner. After each task
receives a random service quantum it either leaves the system (probability
L), or rejoins the end of the queue (probability 1-£) while the processor
works on the next task, The event, "job rejoins the queue', is indepen-
dent of both the length of quantum service, and the number of quanta the
job has received. The distribution of N, the number of job interruptions,

is geometric with expected value 1/2.

-1
#(1-0) ™ ), n=1,2,3,...
(2.13) P(N=n) =
0, elsewhere
W may have a general distribution function with the obvious restriction
that it be non-negative. The first three moments of W are wl, w2, w3,

The total service request for a complete interaction, V, consists nf the

sum of a.random number of random quanta wi.
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N
(2.14) v= T W,
N has the probability mass function specified in equation (2.13). Equation
(2.15) is the Laplace transform of V in terms of the Laplace transform

of W.

(2.15) Lv(s)

1]
™M 8

Iy 4w (s) » P(=1)}
1 1" i

i
®

. -
(L (s 4o (1-p)"
- L

1=

L ()« 4 {11g(s) -(1-0))

Moments of a distribution may be calculated from its Laplace transform

by differentiation.

dLV(s)
(2-16) E(V) =yl= - -&-S—_ 6=0 = wl/z
d2L (s) 2
2.17) E(P) =va = ——| = L2 4 2:(1o0) D)
ds s=0 2,2

From this viewpoint total service time per interaction, V, is deter-
mined by £ and individual quantum times wi. V may have any distribution
that can be represented as the geometric sum of variables having an
arbitrary distribution Fw(t).

For the remainder of this section, consider C, the processing rate

of the computer, to be one instruction per time unit so that W and V
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are measures of the quaantum and interaction times, as well as the numbers
of instructions executed. (Quantum time = (number of instructions per
quantum)/(processing rate of computer)). Using arguments that relate
this model to the M/G/l queueing system, Takacs (1963) establishes the
following formulas for the steady state mean value, and second moment, of

response time R.

Aw2 + 2wl(l-)wl)
2(4-\wl)

(2.18) E(R) =

Y

6 (2-wWwL)Z[#Z - 22+Hwl) + wwl]

(2.19) E(Rz) =

- {2 L[6XW13 - ewl® - Eawlw2 + w2 + wl]

- [2wld - 12w1? - eawlv2 + 22 %wlv3 - Pw2?])

The necessary and sufficient conditions for these equations to be valid
steady state solutions are that le/z‘: 1 and that w2 and w3 be finite.
The term le/z is similar to the standard definition of traffic intensity,
p, which is the mean arrival rate divided by the mean service rate. In
this model the effective arrival rate is 1/2 which includes tasks which
are fed back from the server for additional processing. One may apply
Little's Theorem (equation 2.12) to equation (2.18) to obtain the expected

number of tasks in the system, E(M).

2.3.2 A First Extension to the Basic Model

The model described above may be extended in a number of directions
to include more features of time-sharing. Processor speed, and interrupt

overhead become explicit independent variables in the following analysis.
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Previously W and V were equivalent to time units since the processing
rate was one instruction per time unit. C, the constant computer speed,
is expressed in instructions per unit time. W is the number of instruc-
tions processed before an interrupt occurs, and V is the total number of
instructions required for a task to complete one interaction. The time
spent in one service quanta will be W' = W/C, and total service time for
one task will be V' = v/c.

Interrupts cause overhead. For example, systems with virtual memory
structures, such as the IBM 360/67 and the GE 645, require approximately
five williseconds to process a page tau.i,t.3 This type of overhead may
be included in the model by adding an interrupt processing delay, D, to
each quantum W/C. D is a random variablc, independent of W, having first
three moments dl1, d2, and d3. The central processor continues to work in
a cyclic manner, but after a quantum interval on one task, it cannot start
another until the interrupt processing time D has elapsed. The addition
of D defines a new total quantum time, Q = W/C + D with first three moments
ql, q2, and q3. Using the fact that the Laplace transform of the sum of
two independent random variables is the product of the individual trans-

forms, one may easily differentiate LQ(S) to obtain its moments,

(2.20) LQ(s) = Lw/c(s) . LD(S)

2.21) ql = wl' +dl = wl/Cc +dl
(2.22) q =w2' + 2ul'dl + d2 = w2/c* +2wldl/C + d2
(2.23) q3 = w3/C° + 3dlw2/c® + 3d2wl/cC + d3

3See, for example, the experiments performed on the MULTICS system at MIT
by Corbato (1968).
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Equation (2.15) still defines the relationship between W and V. The
addition of D to W does not change the users' demands, but the processor
takes more elapsed time to satisfy a request in the presence of overhead
than without it.

Replacing wl and w2 with ql and q2 (equations (2.,21) and (2.22)) in
equation (2.18), leads to the following expression for mean response in
this system,

[nfw2/c? + 2wldl/C + d2} + 2(wl/C + d1) + (L-AML/C + d1))]
3 IAWL/C + dD)]

(2.24) E(R) =

The necessary and sufficient condition for existence of a steady state
solution is that X(wl/C + dl)/z < 1. The quantity on the left of this
expression is the effective traffic intensity for the extended model.
One can make the same substitution in (2.19) to investigate the behavior

of the second moment of response time.

2.3.3 'Iwo Examples

Let V, the number of instructions required to complete a task's
request, have a general non-negative distribution with first and second
moments vl and v2, Consider the simplified case of no overhead and no
service interruptions (dl = d2 = 0; £ = 1), Since w = v, this case cor-
responds to batch processing where each interaction is processed to comple-
tion., Equation (2.24) reduces to (2.10), the Pollaczek-Khintchine result
for average response in an M/G/l queueing system, (The first two moments
of service time are vl/c and v2/C2.)

2
(2.25) E(R) = Awv2/c” + %E\{l/_CiS[&))\vl/c)
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Now consider service to be quantized, but still with no overhead, D,
associated with quantum interrupts. W and 4 will be adjusted to hold
the moments of V constant. The probability, £, of completing an
interaction after a quantum of length W is less than one. Substituting
the appropriate variables from (2.16) and (2,17) in (2.24) one arrives
at the following expression for the quantizing model without overhead.

The final form is identical to (2.25).

2,2
A2 - 2(1-0) w1%/cY + 24(v1/e) (1 -avl/C)
(2.26) E(R) 2(4 - Avl/c)

- w2/c? + 2(v1/c) (1 - wl/c)
2(1 - al/c)

Equation (2.26) is unintuitive since, for this model, quantizing
without overhead has no effect on E(R), the expected value of response
time. Any overhead will increase E(R)., If quantizing does not improve
mean response, and actually degrades it due to overhead, one may reason-
ably ask what benefit accrues from this scheduling policy. Briefly, the
benefit is that short requests receive better than average response at
the expense of long requests. The policy of favoring short interactive
requests penalizes longer tasks and degrades overall response when there
is overhead associated with quantum interrupts.

Figure 2,2 illustrates that even though mean response remains con-
stant as more overhead-free quantizing occurs, the standard deviation
of response increases, For this example each quantum is exponentially
distributed. The total service request, V, is also exponential since a

geometric sum of exponentials is an exponential, The mean of V is held
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1 4
10 E(N)

ErN) = 1/42 p = o3 p= .1 p= .9 p= .95
1 1.000 1.000 1.000 1.000
2 1.183 1.268 1,363 1.388
3 1.225 1,333 1.458 1.492
4 1.243 1.363 1.502 1.541
5 1,254 1.380 1.528 1.569
6 1.260 1.390 1.544 1.587
7 1.265 1.398 1.556 1.601
8 1,268 1,404 1,565 1.610
9 1.271 1.408 1.571 1.618

10 1.273 1.411 1.577 1.624

Each table entry is the ratio of the standard deviation of response to
the expected value of response.

Figure 2,2

Effect of Quantum Size on Standard Deviation of Response - SD(R)
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constant and the mean quantum size and the mean number of interruptions
(1/ %) are varied. The input rate increases to examine the effect of
increasing the user demand. For each value of )\, mean response remains
constant. Increased service variability is another undesireable effect
of round-robin scheduling which must be balanced by increased responsive-
ness to short requests.

The effects of overhead on response are obvious in the second example.
Let processor speed, C, be 500,000 instructions per second, and the mean
request for a complete task, vl be 100,000 instructions. Let the standard
deviation of the instruction requests be 150,000 instructions. The aver-
age processing time per task,v1/C,is 200 milliseconds. The probability
that a task will require additional processing after an interrupt is
.97 (£ = 1/30). Thus a task produces an average of 30 interrupts per
interaction, and the mean non-overhead quantum time between interrupts
is 6.67 milliseconds, Figure 2.3 displays expected response, as a func-
tion of mean overhead delay, dl, for a number of values of )\, the Poisson
arrival rate of requests. For each curve, the standard deviation of D
is twice its mean of d1, These results show commonly observed response
degradation caused by overhead delay and by congestion resulting from in-

creasing arrival rates,

2.3.4 Mean Response Conditioned on Service Request

This section contains exact and approximate expressions for mean
response time conditioned on measures of the service requirement.
E(R|N=n) is the expected response for a particular task, requiring n
quanta, which will be marked and followed until it leaves the system.

Let Mi be the number of tasks ahead of this tagged job (both in queue and
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E(R)
Seconds

L = 1.4 Tasks/second
7.0 , = 1,2 Tasks/second

5.0

LB A = 1,0 Tasks/secon

3.0°T

2.0+

1.0~

L L g

20 d1 = mean
overhead
per interrupt
in millisecond

Do
E g
=)}
(s 4}
—
o
—
N
=
Fal
—
=)}
—
(s 4]

C = processor speed = 500,000 instructions per second
1/ 4 = expected interrupts per task = 30

vl = mean number of instructions per task = 100,000

Figure 2.3
Effects of Overhead and Input Rates on Expected Response - TSMODI
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in the processor) as it enters the queue to wait for its ith processing
. th - . s
quantum. Define the i wait, Ti’ to be the time the tagged job waits in

queue as the Mi tasks preceding it receive their quanta.

M

(2.27) Ti = kfl Qk
In this equation task quantum time, Qk’ includes both the random delay D
and processing time W/C.

The first cycle (i=1) is a special case since the remaining quantum
interval of the task being served when the tagged job arrives has a dis-
tribution different from other quanta. Consider cycles after the first.
Processing quanta of all tasks, including the marked job, have the same
distribution. The expected value of the sum of m identically distributed

random variables is m times their expected value. Thus the conditional

expectation of Ti given Mi =m is:
(2.28) E(T;|M;=m) = m-E(Q) = m-ql, i=2,3,...

Removing the condition by taking the expectation with respect to Mi leads

to the unconditional expected value of Ti'
(2.29) E(Ti) = E(Mi) * ql; i=2,3,...

The number of tasks in the system at the start of the ith cycle is
dependent on system state changes during cycle (i-1). The probhability
that a job will leave the system after a quantum interval is £, and the

probability that it will return to the queue is (1-¢). Thus the expected
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number of jobs in front of the tagged job at the start of the ith cycle,
that was also in front of this job at the start of the (i-1l) cycle, is
(1-2) - E(Mi-l)' In addition, new tasks from the input process which
arrive during the tagged job's (i-1) queueing wait plus service quantum
will also be ahead of the tagged job as it begins waiting for its ith
quantum. Since the mean number of arrivals from an exponential source

with rate A during time period T is AT, the expected number of new arrivals
during (T].__1 + ql) is X\ - (Ti-l + ql). Taking the expectation with respect
to Ti leads to the following recursive 2xpression for expected value of Mi

as a function of the expected values of Mi-l and Ti-l'
(2.30) EM) = (1-8) - EQM ;) + ) = (E(T, ;) +4ql), i=2,3,...

Specification of E(Ml) and E(Tl) allows one to use equations (2.29)
and (2.30) to calculate all future waits. Since the arrival process is
Poisson and independent of the service process, a new task arrives at a
random time. E(Ml) is thus the steady state expected number of customers
in the system, E(M), given by applying equation {2.12) to (2.24). cCal-
culation of E(Tl) is complicated by the fact that when the tagged job
arrives at a busy system, the task currently being processed has been
in service for a random interval and its remaining quantum service, Qr’
is distributed differently from other quanta., As indicated in Section 1.3
Shemer (1967) did not recognize this fact and his exponential service model
without overhead contains errors due to this oversight. Figure 2.4 illus-

trates the situation.
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tagged job arrives,
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Figure 2.4

Calculation of First Wait Time, T1

Since ql is the expected value of a full service quantum, let q1r
be the expected value of remaining quantum service, Qr’ of the job being
processed when the tagged job initially arrives at the queue. Let pi'be
the probability that there are i jobs in the system when the tagged task
arrives. Then the expected wait in queue of this task before it begins
service is the sum of mean values of the service quanta of al) queued

jobs and the expected remaining quantum service of the task in the processor.

-y = . L) L]
(2.31)  E(T) = qlspy + (ql +ql)p, + (al +2:al)=py + .-

o]

o(1- i-1
qlr(l po) + ql izl (i )pi

ql;(l-po) + ql{E(M) - (l-po))

p¢r+qHEm)-p)

where p = 1-p0 = x-ql/ﬂ, (equations (2.10) and (2.16))

and E(Qr).= qlr = q2x§-q1), (equation 2.9).
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All values necessary for the calculation of expected total wait, T, con-
ditioned on the number of required quanta, n, are now in easily computable
form.

n

T E(T.)
i=1 1

(2.32) E(T|N=n)
n
= E(Tl) + .§ E(Ti)
i=2
One may express this result in closed form by using equations (2.29)
and (2.30) and straightforward applications of the following identity con-

cerning finfte series.

n

A"/, =

n+l , x=1

(2.33) 1 +x+ x2 4+ ... +t X

k-1
2.30) B, = 2%V LBt + b{i:: } ., k=2,3,...

where a = (1-4) + A-°ql

b = )\-ql

Substitution of this expression in (2.32) leads to a closed form for

E(T|N=n).

l-a (1-a)2

l-an-1 beql n-2
(2.35) E(T|Nen) = E(T)) + ql*EQMy) * + « {(n-2)(l-a)-a(l-a )}
n=1,2,3,...
where E(Tl) is given by (2.31)
E(Mz) = X-(E(Tl) + ql) + (1-2)°EM)

E(M) is given by (2.24) and (2.12)
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Expected total response, conditioned on N, is the sum cf mean expected

total wait and mean total service given that N = n.
(2.36) E(R|Nen) = E(T|Nen) + n-ql

Appendix A includes a derivation of the results of a different model
studied by Adiri and Avi-Itzhak (1969) using the techniques of this section
rather than their complicated transform methods. Their model has a Poisson
source of requests, and constant swapping overhead with exponential service

requests. The results of the two different types of analysis are identical.

2.3.5 A Simplifying Approximation

Equation (2.35) is not an intuitive expression. An interesting approxi-
mation is to let mean waiting time in queue for each cycle after the first,
E(Ti)’ be equal to the steady state expected number of tasks in the system,
E(M), multiplied by the mean quantum interval, ql. Table 2.1 demonstrates
that the magnitude of the error introduced by making this approximation is
small, The exact result, equation (2.35), enables one to measure effects
of such simplifying approximations. Shemer (1967) and Rasch (1970) both
made approximations without realizing it and without measuring the effects.
These results show that their derivations, although not exact, are close
to the correct solutions.

Equation (2.31) is the exact expression for E(Tl)’ the mean wait in
queue before a task begins to receive its first service. One could use
the approximation for this quantity also, but the additional complexity
added by including the exact expression is small. Using the approximation
E(Ti) ~ E(M)-ql in equation (2.32) leads to the iollowing result for mean

total wait in queue, given that N = n,
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(2.37) E(T|¥=n) = E(T;) + (n-1)+qLl-E(M)

p-(q2/2+ql - ql) + neql-E(M), n=1,2,...

A more interesting form of mean conditional response time is to remove
the condition on N, the number of quanta received by a task, and replace
it with a condition on V, the actual processing request. To remove this
condition, one must determine the distribution of the number of quanta

required to fulfill a processing request v.

@
(2.38) E(T|v=v) = I E(T|V=v,N=n):P(Nen|V=v)
n=1
w0
& pc(q2/2-q1 - ql) + ql-E(M)c M ncP(I\hnIV=\,)
' n=1

To evaluate the infinite summation in the above equation, one must
first determine P(N|V=v), the conditional probability that a task will
experience N quanta given that it requires v instructions from the central
processor. This summation is the conditional mean of N given that V = v,
Define (X) ~ f(x) to mean that the random variable X has the distribution
given by f(x). Let f;n(x) be the n-fold convolution of the random variable

*
X (i.e., fxn(x) = f +X (x)) . The total service request for a task,
n

X1+...

V, is the sum of N independent quanta, W, wherc N has the probability mass

function defined in equatioan (2.13).
*n
(2.39) (V|N=n) ~ £, (V)

*n
(2.40) (V,N) ~'fw (v) «P(N=n)

o]

(2.41) (V) ~ £ () = T P(N=n)-f:;n(v)
' n=1
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*n
P(N=n) fw (v)
fV(V)

(2.42) P(N=n|V=v) =

(10" £ W)

n=1,2,...

One may now substitute equation (2.42) into (2.38) to calculate the final
form of the mean total wait in queue conditioned on a service request of
v instructions, The specific form of the result will depend on the density

function of W.

2.3.6 An Exponential Service Quantum Example

A specific example will illustrate this model. The use of an ex-

ponentially distributed quantum, W, keeps the mathematics simple because:

(1) the sum of n identically distributed exponential variables,
when n is a constant, is a random variable having a gamma

distribution

(2) the sum of N identically distributed exponential variables,
when N is & random variable having a geometric distribution,

is an exponential variable,

These two well known facts may be verified by calculating the appropriate
Laplace transforms and comparing them to the transforms of the gamma and
exponential distributions,

Let the density function of W be exponential with mean wl, Therefore
the density function of f;n is gamma and the density function of V is ex-

ponential with mean vl = wl/z.
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e-v/wl
(2.43) fw(v) == Vv =20
z n-1 —v/wl
244y €0y = WD e -1,2,...
( ) f“ v) wi-(a-1)! vz0,n >
.e-z-v/wl
(2.45) £ (V) = ZE—e——, v 20

Substituting the above equations into (2.42) leads to the desired result

for P(N|V=v).

((1-Z)-v/wl)n-l.e'(l'Z)-v/wl

(2.46) P(N|v=v) = — THE , v=0, o°1,2,...
(2.47) E(N|v=v) = T n-P(N|V=v) = ul + :i-z)-v s v=0
n=1

The conditional mass function for N, the number of quanta needed to get v
instructions, is almost the standard Poisson distribution with parameter
ve(l1-2)/wl. Note that the mean number of quanta needed to receive v in-
structions is not the more intuitive quantity v/wl where wl is the mean
number of instructions received per service quantum.

Substituting (2.47) in (2.38) gives a closed form for mean total wait

in queue given that a task requires v instructions.
(2.48) E(T|v=v) = p-(q2/2ql - ql) + ql-E(M) - E(N| v=v)
= {p+(q2/2ql - ql) + ql-EM)} + ql-E(M)-(1-2)-v/wl, v =0

Expected total response conditioned on v is the sum of the wait in the

queue, mean overhead associated with this task, (wl + (1-2)-v)-dl/wl, and

the service time of the task v/ec.



48~

(2.49) E(R|vev) = E(T|Vev) + (Wl + (1-8)+v)-dl/wl + v/C

a + Bev

p+(q2/2ql - q1) + ql-E(M) + dl

where ¢

=
]

1/C + (ql-EM) + dl)-(1-p)/wl

The term o of the previous equation is the expected value of the
minimum response time possible in the system. This unavoidable delay is
the sum of the task's overhead time and the processing and overhead times
of the jobs already in the queue. A physical interpretation of this term
is the response time to a null input (e.g., a carriage return). Note that
after this initial delay, expected response is a linear function of service
request v. A common aspect of many current time sharing models is an
essentially linear relationship between response and service request. This
characteristic is present in the earliest models as shown by the form of
equations (1.2) and (1.3) derived by Kleinrock, but these early models do
not include important features such as random quanta and random overhead.
E(R) may be obtained from (2.49) by removing the condition on v. Since

the expression is linear, one simply replaces v with E(V).
2.4 THE TANDEM QUEUEING MODEL - TSMOD2

A characterisitc shared by almost all computer programs is that they
can be represented as repeating cycles of central processor activity fol-
lowed by utilization of the input-output, (I/O), system. Multiprogramming

designs allow different programs to use these facilities simultaneously by
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switching control from a program requesting I/O service to one needing the
central processing unit. When the original program has finished I/O ac-
tivity it may queue for additional central processing time and release the
I/O facility. Time-sharing operating systems often force task switching

by making a program release control of the central processor when it has
exceeded a quantum processing limit, Figure 2.5 illustrates a basic tandem,
two server model of this organization. For analytical purposes it clearly
does not matter which server is considered the central processor and which
the I/O system.

Define the following symbols for use in the model.

4 = the probability that a job leaves the system after
a cycle of processing and I/O activity

C, = a constant equal to the processing rate of sub-
system i expressad in work per unit time

W. = the exponentially distributed random work required
from subsystem i during a processing cycle. The

expected value of Wi is wli.

W, = Ci/wli = the exponential service rate of subsystem i

-4
[}

the random number of cycles required by a task to
finish one complete interaction with the system

V = an exponentially distributed random variable de-
noting the total work required by a task from
the central processor in N cycles. The expected
value of V is wl]/z.

M. = the random number of tasks waiting in queue i, and
being served in subsystem i
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The assumptions for the model are:

(a) the input process is Poisson with rate )\

(b) queue 1 and queue 2 have unlimited capacity

(c) the service time in each processor is exponential with
mean w]l/C] and w]z/Cz, respectively

(d) after completing service in the second processor a task
rejoins queue 1 with probability (1-£) and leaves the
system with probability (4). The probability of rejoining

queue 1 is independent of all other state variables.

Jackson (1963) presents a number of important results for networks of
Poisson queues. A summary of many of his derivations appears in Conway,
Maxwell, and Miller (1967), Chapter 10. Call the combined input rate to the
first processor \'. It is the sum of the external Poisson input, of rate ),
and that portion of the I/0 system's output which is fed back to the first
queue. This latter process has a rate of \'+(1-£). Thus \', the rate of

the combined input, is:

(2.50) A" =21+ (1-8) '

or \' =1/

A key result of Jackson's analysis is that in the network illustrated in
Figure 2.5 the combined input processes and the resulting output processes
are all Poisson. Thus each subsystem may be analyzed as an exponential

server having Poisson input.
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In the steady state each of the two servers may be treated as an
independent M/M/l queue with input rate \', and service rate Wy = Ci/WIi‘
Equation (2.10) presents expected response in an M/G/1 queueing system.

This equation reduces significantly when service is exponential. Thus
expected response through subsystem i, and the sum of the expected number of

tasks waiting in queue and being served in subsystem i, E(Mi)’ are:

(2.51) E(R,) 1/(ui-w) i=1,2, u, > A’

(2.52) E@M) = A'"ERy) =)'/ -\, i=1,2, p; >\’

Let Ti be the time spent waiting for the central processor plus the
time waiting and receiving service from the I/O processor on the ith pass
through the system. Since all of the stochastic subsystems in this model
are Poisson, in steady state, job arrivals and departures occur at random
points in time. For exponential service, the remaining processing time of
a task is also exponential regardless of how much service the task has al-
ready received. Thus the wait in queue 1 is E(Ml)'E(service quantum), and
the mean response time through system 2 is 1/(u2-X'). In steady state all

cycle times have the same expected value,

E(wait for processor) + E(wait + service for I/0 system)

(2.53) E(Ti)

= )\' + 1
ul(ul-)\') (u'z-)\') 2

B and u,z > !

i=1,2,...

The conditional response time of a job requiring v units from the central

processor which it receives in n quanta is:
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A 1

G T Gaya)

(2.54) E(R|V=v,N=n) = n-{ } + v/Cl, r=1,2,3...
vzay0

Wy and Moy > !

Removing the condition by using (2.46) leads to the result for expected

response conditioned on service request.

(2.55) E(R|V=v) = o + B.V/C,
where = A + L
o ul(ul-k') (uz-x')
and B = p;c(1-0)o+ 1

Figure 2.6 displays the non-linear effect of increasing the demand on
the system. For each line on this graph, the processing request, v, is
held constant and the arrival rate, A\, is increased. Figure 2.7 is a graph
of expected response conditioned on service request, v, for a number of
input rates A, Thus this model also predicts both a linear relationship
between expected response and service request, and non-linear response
degradation as a function of system load.

2.5 A PROCESSOR-SHARED MODEL WITH STATE DYPENDENT OVERHEAD, ARRIVAL, AND

SERVICE PROCESSES - TSMOD3

A fundamental concept of time-sharing organizations is that the
power of the central processing unit is to be allocated to all tasks
demanding service, Processor-shared models approximate actual scheduling
procedures, such as round robin time slicing, with an ideal discipline in
which fixed processor capacity, C, is divided uniformly and delivered to

all active tasks. At every instant, each of n active jobs receives C/m
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units of computing power per unit time. Scherr (1967) recognized that
one of the classic forms of the general "birth and death" model was
directly applicable to the time-sharing problem. His formulation of the
problem allows cne to consider explicitly the number of terminals con-
nected to the system. Scherr considered overhead in a simplified manner
by reducing the capacity of the central processor from C to a lesser
value C'. The quantity (1-C'/C) represents the fraction of the capacity
lost to overhead.

Van de Goor (1970) measured a number of overhead factors in a small
time-sharing system. He discovered that a significant portion of over-
head is proportional to the number of active tasks demanding service from
the system. For example, both paging activity in a virtual memory organiza-
tion and many monitor list searching operations are proportional to the
number of active tasks. The mathematical structure of a finite source,
processor -shared model, allows one to incorporate overhead loss that is
proportional to the number of active tasks in the system. If there are
m active jobs demanding service, then at each instant every task will seem
to have its own virtual processor with capacity (l-f-m)-C/m instructions
per unit time. To keep capacity positive the overhead lcss fraction, f,
must be less than l/N where N is the number of terminals connected to the
system,

Each of the N input terminals is an exponential source with rate ).
However, once & terminal has submitted a job, it is blocked from Additionil
input activity until the computer completes its request. The combined
total input rate for all termminals that do not have requests pending is

(N-m)+ %, where m is the number of jobs actively using the processor. All
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service requests are drawn from an exponential distribution with parameter
v. Thus the mean service request is l/v instructions, and the rate at
which the server processes jobs is ve(l-fem).C. An important feature of
this type of model is that it is stable in the sense that the input rate
decreases as the number of tasks demanding service increases., Unlike
the models in the previous sections where the queues could become un-
bounded, this structure is self correcting, and a steady state solution
will always exist, Figure 2.8 illustrates the basic organization of the
model.

The standard method of solving this class of model is to form a set
of differential difference equations involving system state variables.
Let Pm(t) be the probability that there are m active tasks in the processor
at time t. Since all of the individual input and service processes are
exponential this continuous-time Markov model has simple state transition

probabilities. For example, when 1 < m < N the general state equation is:

(2.56) ﬁu(t+6) (N-m+1)-x-5-(1-f-(m-1))-v-C-6)-Pm_1(t)

+ (1-(N-m)-)\°6)-(1-(1-f-m)-v-C-6)-Pm(t)

+ (L= () +veCo be (1= (N-m=1) 4 X+8) B (£) + o0(5%)
The basic principles underlying this equation are that if interevent

times have an exponential distribution with rate y, then:

(a) the probability that an event will occur during an interval
of length § is y*5, and the probability of no event occurring

is (l=y+§)
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(b) if there are k such processes working in parallel, then
the probability that an event will occur during an inter-

val of length 6 is key-d

(c) the probability of two or more events occurring during

8§ is of the order of 6-58, i.e., 0(62).

The next steps in the derivation are to comstruct similar equations for
the two boundary states m=0 and w=N, and take the limit as § = 0, Let
the derivative of the state probability with respect to time be P&(L)

Pm(t+6)-Pm(t)

— = pt
(2.57) limit, _ g 5 Pm(t)

The set of differential difference state equations becomes:

(2.58) P(') (t) = -N-)\-Po(t) + (1--f)-v-C-P1(t)

I};(t) = (N-(m-1))*MB__,(t) - {(N-m)*x + (L-m*£)v°C}*P (t)
+ (L-(utl)-f)-v-C-P ., () , w=1,2,...N-1
PR(E) = APy, (1) - {(N-N):x + (1-N-£)-v-C]}-P (E)

Statistical equilibrium (or steady state) exists when the statc probabili-

ties no longer change with time,

|
[—]

(2.59) lim P'(t) =
t= ® nm

(2.60) 1lim _ B (t) =P

]
d
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To solve for the equilibrium state probabilities, one lets all
Pé(t) = 0 and then uses the resulting recursive set of steady state equa-
tions, and the fact that tﬁe sum of all of the probabilities is unity, to
compute all values of Pm' Setting all g;(t) to zero and reworking equa-
tion (2.58) by substituting the result for Pm into the equation for %ﬁ+1

leads to the following set of steady state equations.

(2.61) (l-m+£)+v-C-B_ = (N-(m-1))*X-B ;, w=1,2,...N, £< /N

0

(N-N) APy

Adding all terms on both sides of this set of equations produces the follow-

ing expression.

N N N N
(2.62) veCe T P = veC-fe T m-Pﬁ = Ne)de T P = A+ I mPh
m=1 " m=) m=0 m=0

Substituting equations (2.63) and (2.64) into (2.62) leads to (2.65), the
result for the expected value of the number of tasks demanding service from

the system, E(M).

N
(2.63) E(M) = T m.P
m=0 o
N
(2.64) mEI P = 1 - P,

(2.65) EM) = {N-: - v-C-(l--Po)}/(x-(v-C)-f) , £ <1/N, £ "?%E

Equation (2.64) and the set of equations (2,61) lead to the derivation

of PO’ the probability that the central processor is idle. All of the
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other state probabilities are expressible in terms of P..

0

(2.66) P, = N-x-PO/{v-C-(l-f)}

P, = N-(N-l)-xzoPO/[(v-c)Z-(1-f)(1-2f)]

2

: m

Po=PB 0 {(N-(i-1)) N/ (v-C-(1-i£))}, m=1,2,...,N

i=1 '
m
where 2=1Xi = xl-x2-x3...xm
N m

2.67 = 1/[1
@61 By =1L+ B T (n(i-1))on/(voCe (110 ]

If the state dependent overhead fraction, f, is zero, then the result re-

duces to the classic formula for the exponential machine repair problemf

To express mean response time as a function of the mean number in
the system' (equation 2,65) one may use the equilibrium argument that the
mean number of jobs submitted to the system per unit time must equal the
mean number served per unit time. Each of the N terminals goes through
many cyc.2s of generating a request and then waiting for the system to
respond to that request. The mean time spent in the first part of this
cycle is 1/\ time units and the mean time spent in the second i; E(R)
time units. Thus the mean arrival rate from each terminal is 1/(1/1+E(R))
and the total mean arrival rate to the system is N times this quantity.

The service rate of the system is v-.Ce(l-m+f) where w is the number of

tasks being served.

4
See Saaty (1961), p. 326.
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N
(2.68) N/ (1/M+E(R)) = 0-Fg +vC L (1-m.£).P_
m=1

= VcCo(l-Po) = veCefeE(M)

Another way of looking at this relation is to note that when there
are m tasks in the system the arrival rate from the remaining temminals

is (N-m).)\ and thus the mean arrival rate is (N-E(M)):\. One may equate

both expressions for mean arrival rate,
(2.69) N/ (L/MER)) = (N-E@M)) -2

By using equation (2.65) in (2.68), or more simply by solving (2.69)
for E(R), one may obtain the following result for mean response time

in TSMOD3. Both approaches lead to the same result,

E(M)

(2.70) E(R) = A+ (N-E(M))

Figure 2.9 illustrates mean response as a function of N, the number of
terminals connected to the pProcessor, for a number of values of f, the
overhead loss function,

Each of the models developed in this chapter focusses on a different
aspect of current implementations of time-shared computing systems, The
inherent complexities of queueing models make the simultaneous considera-
tion of all such features very difficult., The next two chapters present
empirical iuvestigations of both simulated and actual systems. Response
time measures of these more complex systems are compared with the predic-
tions of the analytic models of this chapter, Chapter 5 contains a number

of examples of how one may use these models,
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CHAPTER 3

SIMULATION STUDIES OF SYSTEM BEHAVIOR

3.1 INTRODUCTION

The results of Chapter 2 provide new expressions relating response
time measures of system performance to parameters such as overhead loss,
processing capacity, service and arrival distributions, and interrupt
probabilities., To keep results easy to compute, these analytic models
are based on many simplifying assumptions concerning system architecture
and user behavior. In addition, equation (2.49), the least complicated
expression for mean response conditioned on service request, depends on
the approximation that all cycle times after the first are equal to
the mean number of tasks in the system multiplied by the mea#n quantum
interval., The goal of this chapter is to explore the robustness of these
results when they are applied to systems that do not satisfy all of the
assumptions. The following experiments range from simulations closely
related to the analytic models of Chapter 2 to more complex designs based
on features of an operational time-shared system,

The first simulation is an exact model of Figure 2.1, with overhead
and quantum times both having truncated normal distributions (both were
constrained to be non-negative), The second and third models are based
on a tandem queueing structure like that analyzed in Section 2.4, The
last gimulation in the ch&épter includes a detailed model of the schedul -
ing algorithms of TSS, an operating system for the IBM 360/67. Task
dispatching in this system includes dynamic priorities, and is much more

complex than the cyclic, round robin, scheduling of the previous models,
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The goals of the experiments are:

(a) to determine how well the equations of Chapter 2 predict
performance characteristics, such as expected value of
response conditioned on service request, even though the
models differ from the assumptions underlying the previous

derivations

(b) to study periormance characteristics that were not derived
analytically but are easy to examine by simulation and
which lead to a deeper understanding of feedback queueing

systems

(c) to determine if a complex model based on an operational
system exhibits the same basic characteristics as the

simpler models,

3.2 EXPERIMENTAL METHODOLOGY

3.2.1 The Simulations

All of the models are implemented in SIMULA, a general purpose
simulation language which extends ALGOL in a number of important dimen-
sions. In addition to all of the features of ALGOL, the language pro-
vides good list processing capabilities, a powerful co-routine capability
including a full range of process scheduling mechanisms, and a number of
statistical procedures.1

For the first three studies each experiment consisted of a 100 task

initialization period, in which statistics were not gathered, followed

1The readér interested in SIMULA is directed to Dahl and Nygaard (1966),
Univac (1967), and McCredie (1970).
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by a production period in which statistics were calculated for 1000
tasks passing through the system, Pilot runs produced initial estimates
for running times and variances of the sample statistics. Each experi-
mental run of the first study required approximately 10 seconds of Univac
1108 processing time. Since the second and third models have two pro-
cessing subsystems in tandem they required twice as much computer time
per simulation as the initial model. To simulate the processing of 1000
tasks in the complex model described in Section 3.5 required about three
or four minutes of 1108 time. As a result of the expense associated
with the detail of this model, only a few experiments were performed.
Each run represents an independent set of statistics since the
models were initialized with different starting seeds for random number
generators, and all statistical counters were reset to zero. The initiali-
zation period to remove startup transients preceded each run. Appendix B

contains listings of the simulations used for the studies.

3.2.2 The Statistical Analysis

One must use statistical tools to analyze data from stochastic
systems. A striking characteristic of the data from the simple queueing
structures of Sections 3.3 and 3.4 is its high variance. The estimators
used to determine model variables come from independent experiments. Jabel
the value of an estimator from simulation rum i, Xi. Each independent
Xi is drawn from a population having a finite mean y and variance 02. An
estimator of  is the sample average i, which is based on all of the ex-
periments and is itself a random variable, In Section 3.3 and 3.4 each

study consists of 20 independent experiments (n = 20).
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n
- X X
i=1

(3.1) X =

=R

i

2
The population variance, ¢~ , for each variable, is unknown in the experi-
ment, but one may use the following estimator of it.

2

n
(3.2) s° = Z

=.2
i (X;-X)

.
n-1 i

To scale X so that it has a mean of zero andlvariance of unity,
subtract p from X and divide the result by (sz/n)z.

1 1
(3.3) 2= &/ (X /m? = (n)2EX-p)/s

The central limit theorem states that Z becomes normally distributed with
mean 0 and variance 1 as n becomes large. Z does not have a normal dis-
tribution for small n because it is based on the random variable sz, an
estimate of 02. Z has a Student-t distribution which deviates from the
Normal distribution for small values of n, but approaches the Normal
when n is large (e.g., n > 30).2

One may form a confidence interval for sample averages by locating
points which partition a desired percent of the area uuder the density
function for the Student-t distribution. For example, one may compute the
probability that an interval based on sample statistics covers the true
mean, p. Using the Student-t distribution with n-1 = 19 degress of freedom,
one finds that in these experiments the probability is .95 that the interval

of equation (3.4) will contain the true mean, .

2See Mood and Graybill (1963), pp. 251-253 for a discussion of the estima-
tion of mean values when the variance is not knowr and pp. 149-153 for a
discussion of the central limit theorem.
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1 |
(3.4) X - 2.09'(sz/n)2 Sy s X + 2.09,(52/n)2

3.3. A SIMULATION OF TsMOD1

3.3.1 The Model

TSMOD1, the feedback queueing model studied in Section 2,3 and illus-
trated in Figure 2.1, is the subject of the first validation experiment.

The following parameters were used in the study:

Fw(t) = FD(t) ~ normal distributions (mean=.05, c=.015)
wl/c = dl =, = .05 seconds

w2/C2 = d2 = 02+(H)2 = .002725(seconds)2

w3/C3 = d3 = (u)3+3'u'<72 = .00015875(seconds)3

Processing rate = C = 1 instruction/microsecond
Arrival rate = )\ = 1 job/second

Probability job leaves after an interrupt = £ = 1/8

The statistical estimators used to summarize the date are:

(3.5) R = the sample average of response times

R,
i

u
= ]
I M3

i=1
where Ri = (time task i leaves the system - time task i

entered the system)

(3.6) SD(R) = the zample standard deviation of respounce times
1

n
_ ol =2y 2
= E (R, -R)"}

i=1
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3.7) ¢t the sample average of the time spent waiting until

a task receives its first processing quantum

n
%‘ % (time task i waits before beginning its first
i=1

processing quantum)

(3.8) P0.100 = the percentage of time the processor was idle

100 -+ (time processor idle/total simulated time)

(3.9) B = least squares estimate of slope of response time as
a function of service request (where vy is service

request of the ith task)

n n n n 2 n 2
={n- T Rev, - ¥ RS vi}/{n + v - (Tv))
i=1 i=1 1 i=1 i=1 =14

The analysis of Section 2.3 presents exact solutions for the expected
values of R (equation 2.24), SD(R) (equation 2.19), El (equation 2,31),
and P0 (equations 2.10 and 2.16). Equation (2.49) is an approximate ex-
pression for the expected value of response time conditioned on service
request, This equation contains a parameter B which is the slope of the
conditional response time. The approximation is based on the assumption
that the service request, V, is an exponentially distributed random vari-
able, and on the mathematical simplification that all cycle times after
the first are equal to the mean number of tasks in the system multiplied
by the mean quantum interval., The next section contains comparisons of
the results of the simulations of TSMODl with the analytic expressions for

these variables,
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3.3.2 The Results

Table 3.2 presents all of the experiemtnal results for each of the

five variables for 20 independent runs, each of which represents 1000

observations obtained after an initialization period of 100 tasks. The

1

experimental values are combined to form the estimators X, sz, S, (s2/20)2

defined by equations (3.1) and (3.2).

presenting the 95 percent confidence interval from the experimental data

Table 3.1 summarizes this data by

and the analytic result from Chapter 2 for each of the five variables.

All of the analytic results lie within the confidence intervals. The

samples display the high variance inherent in queueing systems of this

type. This particular sample exhibits slightly heavier congestion than

predicted by the analytic solution.

very heavily congested experiments.

response times in TSMODI.

95 percent confidence Sample
variable interval {see eq. (3.4)1} Average
R 3.35 < E(R) S 4,51 3.93
SD(R) 4,47 < SD(R) = 6,31 5.39
$0-100 17.38 < py + 100 < 20.43 18.90
ty .34 < E(tl) < 47 A4l
B 8.33 < E(B) < 11,28 9.81

TABLE 3.1

For example, runs six and ten are

Figure 3.1 is a typical histogram of

Analytic
Result

3.81
5.58
20,00
.39

8.54

Comparison of Experimental and Analytic Values for TSMOD1
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The analysis of Section 2.3 predicts a nearly linear relationship
between service request and mean response, To test this result, each
task recorded both its service request and its transit time through the
system, These data were separated into equal service intervals (and
an additional overflow interval) and processed to calculate mean job
response for each interval., Table 3.3 displays the average response,
and the number of observations on whish it is based, for five service
intervils for the 20 experimental runs. Results for the i, sz, s, and
(sz/n)2 are also displayed.

Figure 3.2 is a graph of the data of Table 3.3. Each point is the
sample average of the observations in that interval, and is placed at the
mid point of the service interval. The vertical bars through each point
represent the sizes of the 95 percent confidence intervals computed using
equation (3.4). The solid line connects the sample averages and the two
broken lines form an area in which the true value of mean response con-
ditioned on service request lies with 95 percent confidence. The increas-
ing variance with service comes from two factors: (a) the number of
observations decreases in the intervals having higher values of service
and (b) variance of response increases with service request. Thus long
jobs experience longer, and more highly variable, response than short

jobs.
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3.4 A SIMULATION OF TSMOD2

3.4,1 The Models

TSMOD2 is similar to TSMODl with an additional processing system
after the central processing unit. This extra queueing subsystem repre-
" sents an input/lutput (1/0) system for program swapping, paging, and
file handling. Figure 2.5 illustrates the structure and Section 2.4
includes an analysis of the model when the service times in both systems
are exponential. This section includes simulations of two versions of
TSMOD2. 1In the first (which is identical to the model of Section 2.4)
both the processor and the I/O systems have exponential service distribu-
tions and there is no explicit overhead delay. In the second, the pro-
cessor is identical to TSMODl (an overhead delay and then a processing
quantum) and the I/O processor has a uniform service distribution which
is more representative of rotating external storage devices than an ex-

ponential distribution. The following parameters Were used for these

two models:
Version I Version II
Server 1 Exponential distribution Overhead and service
with rate 10 jobs/second. quanta both have Normal
No overhead. distributions with
mean = .05 seconds and
standard deviations =
.015 seconds (rate =
10 jobs/second)
Server 2 Exponential distribution Uniform distribution be-
with rate 10 jobs/second. tween 0.0 and .2 seconds
(rate = 10 jobs/second).
System arrival rate= 1 job/second 1 job/second
& 1 1
Probability job leaves 8 3

after an .interrupt = £



(3.10)

M, and M

1
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The statisitical estimators used to summarize the data are:

SD(R)

=

sample average of response time (previously defined)
sample standard deviation of response time (previously defined)
sample average of number of tasks in, and waiting in queue

for, server 1

=

IT (number in queue 1 + number in server 1) dt
0

where T irf the simulated time interval of the experiment
sume definition as ﬁl except that queue 2 and server 2
replace queue 1 and server 1

least squares estimate of slope of conditional response

time (previously defined)

Section 2.4 contains exact expressions for the expected values of

9 (equation 2.52), and for the mean value of B (equation 2.55).

The unconditional mean response time, E(R), may be obtained from equa-

tion (2.55) by remaining the condition on V. Since this equation is

linear in v, one simply replaces v with its expected value E(V). The

results of Version I verify this analysis and provide insight into the

variability of the results, Version II is included to test the effects

of changing the distributions of the overhead delay and the processing

requests,

The next section contains comparisons of these two versions

of TSMOD2 with each other and with the analytic expressions of Section

2.4,



-78-

3.4.2 The Results

The results of the simulations of TSMOD2 are presented in a manner
similar to that of Section 3,3. Table 3,4 summarizes the results of
Version I by presenting the 95 percent confidence intervals for the
data and the analytic results from Section 2.4 for these variables,
Table 3.5 displays the zesults for each of the variables for the 20 ex-
periemntal runs of TSMOD2 - Version I. As in the previous section, each
run represents 1000 observations obtained after an initialization period
of 100 tasks. All of the analytic results lie within the confidence
intervals. To test the prediction of a linear relationship between
service request and mean response, each task again recorded both its
service request and its transit time through the system. Table 3.6 cou-
tains the results of separating the service requests into equal intervals
and calculating the sample averages for each interval. Figure 3.3 is
a graph displaying this data and the 95 percent confidence intervals

for response as a function of service request,

95 percent confidence Sauple Analytic
Variable interval {see eq. (3.4)} Average Result
My 3.58 < E(M)) < 4.29 3.9 4.00
M, 3.59 < E(M,) < 4.45 4,02 4.00
R 7.24 < E(R) < 8.61 7.93 8.00
B 7.89 < E(B) < 9.20 8.55 8.88
Table 3.4

Comparison of Experimental and Analytic Values for TSMOD2 - Version I
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Table 3.7 contains the experimental results for TSMOD2 - Version IL.
Each run represents 1000 observations obtained after an initialization
period of 100 tasks. To test the prediction of a linear relationship be-
tween response and service request each task again recorded both its
service request and its transit time through the system., Table 3.8 con-
tains the sample averages of response time for various service request
intervals and the number of data points in each interval. Figure 3.4
is a graph of this data including the 95 percent confidence intervals for
response time as a function of service request.

TSMOD2 - Version II differs in a number of ways from Version I. Since
neither the central processor nor the I/O system have exponential service
distributions, the outputs and thus the resultant inputs to both systems
are not Poisson. Both service distributions have a coefficient of varia-
tion less than an exponential and thus the outputs from the servers are
more regular than from a Poisson process. This increased regularity of
service and input processes reduces both the congestion in the system and
response times. The analysis based on exponential input assumptions over-
states congestion. Queueing theory offers little help in the analysis of
non-Poisson queues in tandem, For example, if the methods of Section 2.4,
in which each subsystem is treated as an independent queueing system, are
applied to this example and both subsystems are treated as independent
M/G/1 queues (with Poisson input rate )' = 8) the mean number in each sub-
system would be E(Ml) = 3,809 and E(Mz) = 2,933, The simulation results
show these valuer to be ﬁl = 2.60 and ﬁz = 2.38, or about 25 or 30 percent
less than predicted by an M/G/l model, This example indicates how non-
radical changes in modeling assumptions may force the analyst to switch
from analytic techniques to simulations to get more accurate estimates of

system parameters, Note, however, that the linear relationship between
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